MATH 54 - HINTS TO HOMEWORK 11

PEYAM TABRIZIAN

Here are a couple of hints to Homework 11! Enjoy :)

Section 6.5: Least squares problems

Here's the general procedure to solve least-squares problems:

To find the least-squares solution of $A \mathbf{x}=\mathbf{b}$ in the least-squares sense, multiply both sides by A^{T}, to get the normal equations:

$$
A^{T} A \widetilde{\mathbf{x}}=A^{T} \mathbf{b}
$$

Your solution $\widetilde{\mathbf{x}}$ is called the least-squares solution and he least squares error is $\|A \widetilde{\mathbf{x}}-\mathbf{b}\|$.
6.5.9. You have to do this directly, and notice this works because the columns of A are orthogonal: If you call the columns of $A \mathbf{u}$ and \mathbf{v} respectively, then:

$$
\hat{\mathbf{b}}=\left(\frac{\mathbf{b} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}+\left(\frac{\mathbf{b} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

Then solve $A \widetilde{\mathbf{x}}=\hat{\mathbf{b}}$
6.5.13. No! Because $\|A \mathbf{v}-\mathbf{b}\|$ is smaller than $\|A \mathbf{u}-\mathbf{b}\|$, so \mathbf{u} cannot be a least-squares solution of $A \mathbf{x}=\mathbf{b}$, by the definition of a least-squares solution! (beginning of section 6.5)
6.5.17.
(a) T
(b) \mathbf{T}
(c) \mathbf{F} (it's the reverse)
(d) \mathbf{T}
(e) \mathbf{T} (this is the uniqueness-test I talked about in lecture)
6.5.18.
(a) \mathbf{T} (because if \mathbf{b} is in $\operatorname{Col}(A)$, then $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{x}, which is also the least-squares solution!)
(b) \mathbf{F} (it's the x such that $A \mathbf{x}$ is closest to \mathbf{b}, the least-squares solution does not lie in $\operatorname{Col}(A)$, draw a picture to convince yourself of that!)
(c) \mathbf{T} (It's a fancy way of saying: Find $\widetilde{\mathbf{x}}$ such that $A \widetilde{\mathbf{x}}=\hat{\mathbf{b}}$
(d) \mathbf{F} ($A A^{T}$ might not be invertible! But if it is, then yes)
6.5.25. It's the same as usual, except that there will be many least squares solutions! You should find $x+y=3$

SECTION 6.6: Applications to Linear models

You can IGNORE this section if you want!
6.6.3. Suppose $y=\beta_{0}+\beta_{1} x$, then assuming the points are on the line, you get:

$$
\left\{\begin{array}{l}
\beta_{0}-(1) \beta_{1}=0 \\
\beta_{0}+(0) \beta_{1}=1 \\
\beta_{0}+(1) \beta_{1}=2 \\
\beta_{0}+(2) \beta_{1}=4
\end{array}\right.
$$

That is:

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
4
\end{array}\right]
$$

Now solve this using least-squares!

SECTION 6.7: INNER PRODUCT SPACES

Note: In this section, I would like you to actually evaluate any integrals you find! No cheating and using your calculator :) The reason is that 1) there are only 3 problems where you have to do this and 2) On the exam, you're not allowed to use a calculator!
6.7.15. Here $\stackrel{(1)}{=}$ means: We use axiom 1 on page 368 , etc.

$$
\langle\mathbf{u}, c \mathbf{v}\rangle \stackrel{(1)}{=}\langle c \mathbf{v}, \mathbf{u}\rangle \stackrel{(2)}{=} c\langle\mathbf{v}, \mathbf{u}\rangle \stackrel{(1)}{=} c\langle\mathbf{u}, \mathbf{v}\rangle
$$

6.7.17. Write $\|\mathbf{u}+\mathbf{v}\|^{2}$ as $\langle\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}\rangle$ and expand everything out. Ditto for the other term!
6.7.19, 6.7.20. The Cauchy-Schwarz inequality says $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\|$. For 6.7.20, square each term!
6.7.21, 6.7.23. $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$. Also, $\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\int_{0}^{1}(f(t))^{2} d t}$
6.7.25, 6.7.26. Use the usual Gram-Schmidt process, except with $\mathbf{u}_{\mathbf{1}}=1, \mathbf{u}_{\mathbf{2}}=t$, $\mathbf{u}_{\mathbf{3}}=t^{2}$, and $\mathbf{f} \cdot \mathbf{g}=\int_{-1}^{1} f(t) g(t) d t$ for 6.7 .24 and $\mathbf{f} \cdot \mathbf{g}=\int_{-2}^{2} f(t) g(t) d t$. If you don't remember the Gram-Schmidt formulas, here they are:
$\mathbf{v}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}$ and cross out $\mathbf{u}_{\mathbf{1}}$ from your list!
Then calculate $\hat{\mathbf{u}_{\mathbf{2}}}=\left(\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \cdot \mathbf{v}_{\mathbf{1}}}\right) \mathbf{v}_{\mathbf{1}}$.
Then let $\mathbf{v}_{\mathbf{2}}=\mathbf{u}_{\mathbf{2}}-\hat{\mathbf{u}_{\mathbf{2}}}$, and cross out $\mathbf{u}_{\mathbf{2}}$ from your list!
Then calculate:
$\hat{\mathbf{u}_{3}}=\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\right) \mathbf{v}_{\mathbf{1}}+\left(\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{2} \cdot \mathbf{v}_{\mathbf{2}}}\right) \mathbf{v}_{\mathbf{2}}$
Then let $\mathbf{v}_{\mathbf{3}}=\mathbf{u}_{\mathbf{3}}-\hat{\mathbf{u}_{3}}$, and cross out $\mathbf{u}_{\mathbf{3}}$ from your list!
Evaluate any integrals that you find! Don't just copy the answer from the back of the book!

